publications collage2


[24]. Alexandre A. et al. 2019. Effects of leaf length and development stage on the triple oxygen isotope signature of grass leaf water and phytoliths: insights for a proxy of continental atmospheric humidity. Biogeosciences 16: 4613–4625.

[23]. Barry K. et al. 2019. Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology (In Press).

[22]. Volaire F. et al. 2019. The resilience of perennial grasses under two climate scenarios is correlated with carbohydrate metabolism in meristems. Journal of Experimental Botany (In Press).

[21]. Eisenhauer N. et al. 2019. A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research (In Press).

[20]. Roscher C. et al. 2019. Functional composition has stronger impact than species richness on carbon gain and allocation in experimental grasslands. PLoS ONE 14(1): e0204715.


[19]. Guillot E. et al. 2018. With or without trees: Resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system. Soil Biology and Biochemistry 129: 122-135. doi:10.1016/j.soilbio.2018.11.011

[18]. Alexandre A. et al. 2018. Triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: insights from climate chamber and climate transect calibrations. Biogeosciences 15: 3223–3241; doi:10.5194/bg-15-3223-2018.

[17]. Milcu A. et al. 2018. Genotypic variability enhances the reproducbility of an ecological study. Nature Ecology and Evolution 2: 279-287; doi:10.1038/s41559-017-0434-x.


[16]. Weisser W. W. et al. 2017. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology 23: 1-73; doi:10.1016/j.baae.2017.06.002

[15]. Roy J. et al. 2017. European infrastructures for sustainable agriculture. Nature Plants 3: 756–758; doi:10.1038/s41477-017-0027-3.

[14]. Milcu A. et al. 2017. Top canopy nitrogen allocation linked to increased grassland carbon uptake in stands of varying species richness. Scientific Reports 7: 8392; doi:0.1038/s41598-017-08819-9.

[13]. Guderle M. et al. 2017. Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology 32: 214-227; doi:10.1111/1365-2435.12948.

[12]. Ciabrelli F. et al. 2017. Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nature Genetics 49: 876-886, doi:10.1038/ng.3848.

[11]. Resco de Dios V. et al. 2017. Circadian rhythms regulate the environmental responses of net CO2 exchange in bean and cotton canopies. Agricultural and Forest Meteorology 239: 185-191; doi:10.1016/j.agrformet.2017.03.014.

[10]. Garcia-Plazaola J.I. et al. 2017. Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant Cell & Environment. 40: 1153-1162; doi:10.1111/pce.12909.

[9]. Gessler A. et al. 2017. Night and day - Circadian regulation of night-time dark respiration and light enhanced dark respiration in plant leaves and canopies. Environmental and Experimental Botany 137: 14-25; doi:10.1016/j.envexpbot.2017.01.014.


[8]. Resco de Dios V., et al. 2016. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions. GigaScience 5: 43; doi:10.1186/s13742-016-0149-y.

[7]. Roy J. et al. 2016. Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. PNAS (Proceedings Natl. Acad. Sci. United States Am): 113: 6224-6229; doi:10.1073/pnas.1524527113.

[6]. Milcu A. et al. 2016. Plant species and functional diversity increase grassland productivity- related water vapor fluxes : a combined Ecotron and modeling approach. Ecology 97(8): 2044–2054; doi:10.1890/15-1110.1.

[5]. Mellado-Vázquez P.G. et al. 2015. Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biology and Biochemistry 94: 122-132; doi:10.1016/j.soilbio.2015.11.012.


[4]. Lange M. et al. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications 6:6707; doi: 10.1038/ncomms7707.

[3]. De Dios V. R. et al. 2015. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration. Scientific Reports 5:10975; doi:10.1038/srep10975.


[2]. Milcu A. et al. 2014. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecology Letters 17:435–444; doi:10.1111/ele.12243.

[1]. Coulis M. et al. 2015. Functional dissimilarity across trophic levels as a driver of soil processes in a Mediterranean decomposer system exposed to two moisture levels. Oikos 124: 1304-1316; doi:10.1111/oik.01917.

Ecotron-related publications

Boeck H. et al. 2015. Global change experiments: challenges and opportunities. Bioscience 65: 922-931; doi:10.1093/biosci/biv099.