+ 33 4 34 35 98 94 ecotron@cnrs.fr

ECOTRON – PUBLICATIONS

43.Ganault, P., Nahmani, J., … Milcu, A. (2024). Earthworms and plants can decrease soil greenhouse gas emissions by modulating soil moisture fluctuations and soil macroporosity in a mesocosm experiment. Plos one. https://doi.org/10.1371/journal.pone.0289859

42**. Forey, O., Milcu, A., … Sauze, J. (2023). Data from: Earthworms do not increase greenhouse gas emissions (CO2 and N2O) in an ecotron experiment simulating a three-crop rotation system, Dryad, 2739988 bytes. https://doi.org/10.5061/DRYAD.MGQNK9955

41. Forey, O., Sauze, J., … Milcu, A. (2023). Earthworms do not increase greenhouse gas emissions (CO2 and N2O) in an ecotron experiment simulating a three-crop rotation system, Sci. Rep., 13. https://doi.org/10.1038/s41598-023-48765-3

40. Siegwart, L., Piton, G., … Bertrand, I. (2023). Carbon and nutrient colimitations control the microbial response to fresh organic carbon inputs in soil at different depths, Geoderma, 440. https://doi.org/10.1016/j.geoderma.2023.116729

39. Voigt, C., Alexandre, A., … Ogée, J. (2023). Examination of the parameters controlling the triple oxygen isotope composition of grass leaf water and phytoliths at a Mediterranean site: a model–data approach, Biogeosciences, 20, 2161–2187. https://doi.org/10.5194/bg-20-2161-2023

38 *. Marx, V. (2023). Soil researchers dig deeper into dirt’s complexity. Nature Methods, 20, 1131-1134.https://doi.org/10.1038/s41592-023-01962-4

37.  Gillespie, L. M., Prada-Salcedo, L. D., … Hättenschwiler, S. (2023). Taxonomical and functional responses of microbial communities from forest soils of differing tree species diversity to drying-rewetting cycles. Pedobiologia, 150875. https://doi.org/10.1016/j.pedobi.2023.150875

36. Paul, C., Piel, C., … Landais, A.  (2023). Determination of respiration and photosynthesis fractionation factors for atmospheric dioxygen inferred from a vegetatio-soil-atmosphere analogue of the terrestrial biosphere in closed chambers. Biogeoscience, 20, 1047-1062. https://doi.org/10.5194/bg-20-1047-2023

35. Voigt, C., Vallet-Coulomb, C., … Alexandre, A.  (2021).17O-excess and d-excess of atmospheric water vapor measured by cavity ring-down spectrometry: Evidence of a matrix effect and implication for the calibration procedure. Rapid Communications in Mass Spectrometry:1–16. https://doi/10.1002/rcm.9227

34. Outrequin, C., Alexandre, A., … Voigt, C. (2021). The triple oxygen isotope composition of phytoliths, a new proxy of atmospheric relative humidity: controls of soil water isotope composition, temperature, CO2 concentration and relative humidity. Climate of the Past, 17, 1881-1902. https://doi.org/10.5194/cp-17-1881-2021

33. Schmidt, A., Hines, J., … Eisenhauer, N. (2021). The iDiv Ecotron – a flexible research platform for multitrophic biodiversity research. Authorea, in press. https://doi.org/10.22541/au.161614989.97388658/v1

32**. Barry, K., van Ruijven, J., … Stefanie Weigelt, A. P. (2020). Data from: Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Dryad, 1–3. https://doi.org/10.5061/dryad.7c01654

31. Roy, J., Rineau, F., … Milcu, A. (2020). Ecotrons: powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. Global change biology, 27, 1387-1407. https://onlinelibrary.wiley.com/doi/10.1111/gcb.15471

30. Resco de Dios, V., Anderegg, W. R. L., … Gessler, A. (2020). Circadian Regulation Does Not Optimize Stomatal Behaviour. Plants, 9, 1091. https://www.mdpi.com/2223-7747/9/9/1091

29. Gillespie, L.M., Fromin, N., … Hättenschwiler, S. (2020). Higher tree diversity increases soil microbial resistance to drought. Communications Biology, 3:377. https://doi.org/10.1038/s42003-020-1112-0

28. Ruijven, V., Kroon, D., & Felten, V. (2020). Data from: Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Dryad, 1–3. https://doi.org/10.5061/dryad.7c01654

27. Volaire, F., Morvan-Bertrand, A., … Picon-Cochard, C. (2020). The resilience of perennial grasses under two climate scenarios is correlated with carbohydrate metabolism in meristems. Journal of Experimental Botany, 71(1), 370–385. https://doi.org/10.1093/jxb/erz424

26. Alexandre, A., Webb, E., … Roy, J. (2019). Effects of grass leaf anatomy, development and light/dark alternation on the triple oxygen isotope signature of leaf water and phytoliths: insights for a new proxy of continental atmospheric humidity. Biogeosciences Discussions, 1–17. https://doi.org/10.5194/bg-2019-73

25. Barry, K. E., van Ruijven, J., … Weigelt, A. (2019). Limited evidence for spatial resource partitioning across temperate grassland biodiversity experiments. Ecology, 101, 1–13. https://doi.org/10.1002/ecy.2905

24. Eisenhauer, N., Schielzeth, H., … Jochum, M. (2019). A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 61, 1–54. https://doi.org/10.1016/bs.aecr.2019.06.001

23. Roscher, C., Karlowsky, S., … Gleixner, G. (2019). Functional composition has stronger impact than species richness on carbon gain and allocation in experimental grasslands. PloS ONE, 14(1), e0204715. https://doi.org/10.1371/journal

22. Guillot, E., Hinsinger, P., … Bertrand, I. (2019). With or without trees: Resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system. Soil Biology and Biochemistry, 129, 122–135. https://doi.org/S0038071718303869

21. Guderle, M., Bachmann, D., … Hildebrandt, A. (2018). Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology, 32(1), 214–227. https://doi.org/10.1111/1365-2435.12948

20 *. Clobert, J., Chanzy, A. ,,, Saint-André, L. (2018). How integrate experimental research approaches in ecological and environmental studies: AnaEE France as an example. Frontiers in Ecology and Evolution, 6, 43. https://doi.org/10.3389/fevo.2018.00043

19. Alexandre, A., Landais, A., … Roy, J. (2018). The triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: insights from climate chamber and climate transect calibrations. Biogeosciences Discussions, 15, 3223–3241. https://doi.org/10.5194/bg-2017-471

18. Milcu, A., Puga-Freitas, R., … Roy, J. (2018). Genotypic variability enhances the reproducibility of an ecological study. Nature Ecology & Evolution, 2, 279–287. https://doi.org/10.1038/s41559-017-0434-x

17 *. Roy, J., Tardieu, F., Tixier-Boichard, M., & Schurr, U. (2017). European infrastructures for sustainable agriculture. Nature Plants, 3(10), 756–758. https://doi.org/10.1038/s41477-017-0027-3

16. Weisser, W. W., Roscher, C., … Eisenhauer, N. (2017). Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology, 23, 1–73. https://doi.org/10.1016/j.baae.2017.06.002

15. Milcu, A., Gessler, A., … Roy, J. (2017). Top canopy nitrogen allocation linked to increased grassland carbon uptake in stands of varying species richness. Scientific Reports, 7(1), 8392. https://doi.org/10.1038/s41598-017-08819-9

14. García-Plazaola, J. I., Fernández-Marín, … Resco de Dios, V. (2017). Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant Cell and Environment, 40(7), 1153–1162. https://doi.org/10.1111/pce.12909

13. Ciabrelli, F., Comoglio, F., … Cavalli, G. (2017). Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nature Genetics, 49, 876–888. https://doi.org/10.1038/ng.3848

12. Resco de Dios, V., Gessler, A., … Roy, J. (2017). Circadian rhythms regulate the environmental responses of net CO 2 exchange in bean and cotton canopies. Agricultural and Forest Meteorology, 239, 185–191. https://doi.org/10.1016/j.agrformet.2017.03.014

11. Gessler, A., Roy, J., … de Dios, V. R. (2017). Night and day – Circadian regulation of night-time dark respiration and light-enhanced dark respiration in plant leaves and canopies. Environmental and Experimental Botany, 137, 14–25. https://doi.org/10.1016/j.envexpbot.2017.01.014

10. Milcu, A., Eugster, W., … Buchmann, N. (2016). Plant functional diversity increases grassland productivity-related water vapor fluxes: An Ecotron and modeling approach. Ecology, 97(8), 2044–2054. https://doi.org/10.1890/15-1110.1

9. Resco de Dios, V., Gessler, A., … Roy, J. (2016). Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions. GigaScience, 5(1), 43. https://doi.org/10.1186/s13742-016-0149-y

8. Roy, J., Picon-Cochard, C., … Soussana, J.-F. (2016). Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. PNAS, 113, 6224–6229. https://doi.org/10.1073/pnas.1524527113

7. Mellado-Vasquez, P. G., Lange, M., … Gleixner, G. (2016). Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biology and Biochemistry, 94, 1–33. https://doi.org/10.1016/j.soilbio.2015.11.012

6 *. Mougin, C., Azam, D., … Chanzy, A. (2015). A coordinated set of ecosystem research platforms open to international research in ecotoxicology, AnaEE-France. Environmental Science and Pollution Research, 22(20), 16215–16228. https://doi.org/10.1007/s11356-015-5233-9

5. Coulis, M., Fromin, N., … Hättenschwiler, S. (2015). OK-Functional dissimilarity across trophic levels as a driver of soil processes in a Mediterranean decomposer system exposed to two moisture levels. Oikos, EV-1-EV-13. https://doi.org/10.1111/oik.01917

4. De Boeck, H. J., Vicca, S., … Beier, C. (2015). Global change experiments: challenges and opportunities. BioScience, 65, 922–931. https://doi.org/10.1093/biosci/biv099

3. de Dios, V. R., Roy, J., Ferrio, J. P., Alday, J. G., Landais, D., Milcu, A., & Gessler, A. (2015). Processes driving nocturnal transpiration and implications for estimating land evapotranspiration. Scientific Reports, 5, 10975. https://doi.org/10.1038/srep10975

2. Lange, M., Eisenhauer, N., … Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707. https://doi.org/10.1038/ncomms7707

1. Milcu, A., Roscher, C., … Roy, J. (2014). Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecology Letters, 17(4), 435–444. https://doi.org/10.1111/ele.1224

* Articles presenting the Ecotron experimental platforms in an international context

** Data paper